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BASIS OF THE TERMINOLOGY AND ALGORITHM FOR THE 

SOLUTION OF INVERSE HEAT-TRANSFER PROBLEMS 

L. A. Kozdoba UDC 536.24 

The terminology of thermal engineering, and particularly the phenomenological theory of 
heat conduction in which inverse heat-conduction problems enter, lags behind the level of 
development of this intensively developing branch of science. The lag caused by the 
accelerated development of the class of inverse problems is that many problems and methods 
for their solution have no rigorous scientific description in clearly formulated criteria and 
have not appropriate clear definitions, terminological designations. By definition, termino- 
logy is a word or word-combination called upon to denote a concept and its relationship to 
other concepts exactly within the limits of a special sphere. Ideal terminology should be 
unique, systematic, and stylistically neutral. 

Let us first of all separate the inverse heat-transfer problems into several already 
existing groups according to the criterion, the kind of heat transfer. Inverse problems 
(IP) which are solved or can be solved for technological processes and (or) technical sys- 
tems for which the thermal operational aspects are investigated can be called heat exchange , 
heat transfer, heat transmission IP or thermal IP. Depending on the kind of heat exchange, 
these thermal IP can be separated into IP of heat conduction, convection, radiation, and 
finally, IP of complex convection--radiation-conduction heat transfer. This latter class of 
IP is substantially the thermal IP or heat transfer IP if all kinds of heat exchange are 
understood to be heat transfer. 

Usually, and moreover, habitually, the terminology "heat conduction IP" is used although 
it is often a question of more complex (in the kind of heat exchange) heat transmission IP. 
Below, as a rule we speak of inverse heat-conductionproblems (IHCP) and the abbreviation 
IHCP refers to inverse heat-conduction problems and not to IP of heat exchange, generally. 

Heat exchange IP and IHCP, particularly methods of their solution, have been the subject 
of hundreds of journal papers and tens of monographs* (the books [1-7] have been devoted to 
IHCP, for instance), but up to now there has been no classification of the problems and 
methods corresponding to the requirements imposed on scientific classifications [8], despite 
the numerous (sometimes contradictory) proposals [1-7]. 

*We have in mind not only monographs devoted to heat transmission IP but also numerous 
monographs on methods of solving IP in different branches of science in which the mathemati- 
cal models are isomorphic with the mathematical models of heat exchange. 
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Much of the terminology, the designation of problems (DP) and inverse problems (IP), 
does not correspond to the requirements presented above insofar as information retrieval of 
the research is practically impossible. For instance, the whole set of types of problems 
entering into inverse problems are called inverse heat-conduction problems, and simultaneously, 
separate types of problems are called "inverse." For example, external inverse problems in 
which we find the boundary conditions are called simply "inverse," "boundary inverse." In- 
verse problems in which we find coefficients or terms entering into the main equation, the 
heat-conduction equation, are called "coefficient" equations although there are coefficients 
in the boundary conditions and in the initial condition in the mathematical model of the heat- 
conduction phenomenon. Many authors who propose or use the classification of problems and 
(or) methods of solving problems (inverse heat-conduction problems (IHCP) in our case) do 
not mention the classification criteria, which results in an incorrect appraisal of the re- 
search, and consequently, inadequate utilization of the results of scientific developments 
in theoretical and applied investigations. 

It is emphasized in [8] that "the abundance and poor order in the new concepts and 
terminology, printed and unpublished material makes difficult the retrieval and utilization 
of necessary data, which causes and information deficit that retards social progress. Develop- 
ment of an optimal classification consequently becomes not only a scientific but also an 
economically important problem" [8, p. 269]. Papers on terminology sometimes seem to be 
less informative than research devoted to specific methods of solution and results of solving 
IP. Many years of research on the primary sources of IP and methods of solving them, retrie- 
val of the necessary method of scientific investigation in the literature [1-7, 9], and, 
finally, the program paper [i0] obliged still another recollection of the problems of termi- 
nology and classification of IP and methods for their solution -- once more, because a classi- 
fication of IP and methods for their solution is proposed in the papers [ii, 12], in the re- 
port [13], and in the monograph [7]. The IP classification [7, ii, 13] is constructed by 
deduction [8], is natural, which means i) general initial concepts are given and substantial 
criteria of the objects being classified, the problems and their methods of solution are 
taken as the foundation of the classification. Precisely such a natural classification "can 
be the source of knowledge of the objects being classified" [8, p. 269]. 

There is a standard natural classification of problems according to the kinds of heat 
exchange in the theory of heat and mass transfer: i) heat conduction; 2) convection; 3) 
radiation; 4) heat exchange in chemical and phase transformations. 

Problems classified according to the kinds of heat exchange can be classified according 
to many other criteria, for instance, according to the dependence of the desired quantities 
on time (stationary, nonstationary), coordinates, uniformity of the bodies being investi- 
gated, etco An example of such a classification of direct heat-conduction problems is pre- 
sented in [14]. Up to now inverse heat-conduction problems have no generally applicable 
and steady classification although first episodically and then systematically they were resolved 
more than 25 years ago in thermal engineering practice. The paper is not devoted to the history of 
the question. It is possible to refer to certain historical information available in monographs 
[1-7, 14, 15] to emphasize that proposals to classify both the problems and the methods for their 
solution are contained in each of these books. Before turning to the classification, we 
note that classification is inseparably related to terminology since the classes isolated 
require designation, a new term. The terms that were ascribed to new problems and methods 
of solution did not often correspond with the requirements listed at the beginning of the 
paper. For example, the term "direct methods" of solving inverse problems (IP) is not de- 
fined in [16] and does not correspond to the definitions of the term "direct methods" in 
[17]. In every case, the criterion by which direct methods are distinguished from indirect 
is mentioned in [16], while it follows from the content of [16] and [17] that the criterion 
indicated in [17] differs from the criterion by which the author of [18] separated the 
methods into direct and, evidently, variational (pp. 531, 533 in [18]). A definition of 
direct methods is given in [18] which does not correspond to the definition in [17]. There- 
fore, the identical term is applies to denote different concepts. The designation "inver- 
sion method," "inverse correspondence method" is suitable for the methods called "direct" 
by the definition of the author [16, 18, p. 531]. We speak about this designation below. 

Thus, a new class of problems in mathematical physics was extracted, particularly, in 
thermal engineering, which was called "inverse problems." 
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By what criterion are all problems (including the heat-conduction problems) divided into 
direct and inverse? By the criterion of that which is desired, the cause or the effect. In direct 
problems the effect is determined from the causes. In inverse problems, causes are found in 
terms of effects. Thus, division of mathematical physics problems into direct and inverse 
presumes knowledge of the cause-effect relationship. It is shown in [9] that the definition 
presented is not unique, but in the author's opinion [19] (and in our's) is uniquely correct. 

Let us consider the criteria by which inverse heat-conduction problems can be classified, 
and let us consider certain designations, terms, which are proposed in different publications 
as applicable for the description of different types (classes) of IP. The first criterion is: 
the aspect of the physical phenomenon that is estimated in solving the IP, qualitative or 
quantitative. When the qualitative side is estimated, we seek the form of the mathematical 
model of the phenomenon being investigated. Such problems are called structural identifica- 
tion problems generally, and inductive problems in the heat-conduction theory in particular. 
Let us recall that the term "identification" in the most general sense of this word denotes 
"oneness, equivalence, sameness," while in science and engineering it denotes the selection 
of the form and content of the mathematical description (mathematical model). This model is 
optimal in some sense (the optimality criterion should be chosen or given) and is constructed 
by means of realizations of the input and output signals of the object being identified. 
Thus, a qualitative inverse problem is a structural identification problem. In the heat- 
conduction theory where the model is more or less known, the form of the model is just re- 
fined and the qualitative problem is called an inductive problem [14, 15]. 

Problems of searching for quantitative values of the coefficients or terms of the 
mathematical model will be called "quantitative." These problems are the subject of para- 
metric identification and depending on the site of the desired quantity in the mathematical 
model are called external inverse, inverse (internal inverse), inverted in heat-conduction 
theory (Fig. i). 

The second criterion for the classification of quantitative inverse problems is the 
place of the desired quantity in the mathematical model of the thermal phenomenon being in- 
vestigated. The mathematical model consists of the fundamental equation (the heat-conduc- 
tion equation in our case) and the boundary conditions -- the conditions of single-valuedness~ 
in which the boundary conditions and the initial condition enter. 

The problem is called external inverse (boundary*) when according to the temperature 
effects (found in experiment T e) we seek the boundary conditions of the I, II, III, and IV 

kind. Correspondingly, the external inverse problems can be called external inverse problems 
of the kind I (search for Ts) , II (search for qs ), III (search for ~ or Tm) , and IV (search 

for Ts and qs simultaneously). 

Methodologically it is interesting to stress the following. Just one classification cri- 
terion, the kind of boundary conditions, was chosen above. The classification was then made 
according to this criterion. 

The problem is called inverse (internal inverse, coefficient) when we seek the coeffi- 
cients or terms inside the fundamental transport equation (heat conduction equation) by 
means of the effects T. Such coefficients are the coefficient of heat conduction (I), the 
bulk specific heat (c V = cp), and the power of the bulk internal heat sources (qv)- The 

search for I and c V can be called the inverse problem of the kind I, and the search for qv 

the inverse problem of the kind II. 

The problem is called inverted (retrospective, time) when we seek the previous (often 
initial) temperature distribution according to the effects T. 

The object of identification can be selected as a classification criterion. The in- 
verse problem will then be solved for a shell, a vessel, a support, a device, etc. The heat- 
transfer process can be selected as a criterion. Then the inverse problem (IP) will be an 
IP of heat conduction (IHCP), convection, radiation. An individual subject or a system of 
subjects related by thermal bonds can be selected as a criterion. Then the IP can be called 
an IP of a specific element and of heat transfer in a technical system. 

*As a rule, we present the terms used by other authors in parenthesis. 
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But it is impossible to divide problems in different criteria into classes as is done 
in [5] (p. i0). It is impossible to divide problems into inverse heat-conduction problems 
and inverse problems of heat transfer in technical systems. The former are isolated accord- 
ing to the criterion of the kind of heat transfer. The latter are isolated according to the 
content of the object without any indication of the kind of heat transfer therein. 

In the former, heat-conduction problems are solved in both systems and objects, while in 
the latter, heat transfer in technical systems occurs by heat conduction, convection, and 
radiation. Inverse heat-conduction problems are a particular case of heat-transfer problems 
in technical systems and are extracted from them according to the criteria: a) the kind of 
heat transfer; and b) the degree of hierarchy of the object under investigation in the given 
system. 

The fact should be noted that different mathematical models are identified according to 
a given classification contradiction: a heat-conduction model with its boundary conditions 
in the IHPC, and energy conservation equations written for all the elements and the inter- 
mediate media (between the elements) of the system in the heat-transfer IP in technical sys- 
tems. As a rule, these equations are written in balanced form: the system of such equations 
takes account of all the thermal bonds and all kinds of heat transfer (including heat con- 
duction). 

It is interesting to note that the methods of the theory of identification were applied 
to solve the inverse problems of heat transfer for technical systems in [20], and its author 
considers the system of balance equations a certain approximation of the heat-conduction 
equation with equivalent heat-transfer coefficients to take account of convection and 
radiation. This manner of utilizing statistical estimation methods was later developed 
successfully in application to inverse problems for heat-conduction processes in [3]. 

Let us turn to the IHCP. The IHCP can be classified according to the designations of 
any of its terms in the mathematical model. All the quantities except the temperature T, 
the effect, are causes in the mathematical heat-conduction model. Let us enumerate them: 

%' Cv' qv' xi' T, qs' Ts' ~' Tm' T(xi' 0), etc. In every specific case, the quantities de- 

sired in the IHCP can enter into qv and qs" For instance, if qs ~(T~s -- T4)m ' then e, the 

absorption coefficient of the surface subjected to radiation, can be sought by means of T . 
e 

The quantities mentioned above are the coefficients, the coordinates (describe the form), and 

the time (T). It is logical to call I the IHCP coefficient, geometric (or coordinate), and 
time problems, depending on the designation of the desired quantity. 

Starting from this classification criterion, coefficient inverse problems are all IP in 
which we seek the coefficients, and not only those problems in which the coefficients %, c V 

are determined from the fundamental heat-conduction equation. It is characteristic that in- 
verted (retrospective) problems are coefficient problems according to the proposed classifi- 
cation (Fig. i), since the desired initial distribution (or any previous distribution) can 
be a coefficient in the initial mathematical heat-conduction model. 

Inverted problems are therefore extracted into a special kind of criterial problem, the 
part of the MM in which the desired quantity enters. Moreover, they are extracted according 
to the criterion of the desired quantity in the coefficient IP, and according to the specific 
designation of the desired quantity, the previous potential field, are called "retrospective" 

or "inverted" as is customary. 

In our opinion, such a classification of problems, the considered criteria, and the 
proposed designations correspond to the requirements on the terminology and classification 

described above. 

Before turning to a classification of methods of solving IP, it is necessary to examine 
the interrelationship between the IP and the problem of optimal control of thermal processes 

(OCTPP). 

The OCTPP differ from the IP of heat transfer in that the optimal temperature distribu- 
tions in the bodies are initial and given, rather than the experimental temperatures T e (i.e., 

taking place in a real physical process). The optimal temperature distribution is given, but 
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it can be such that under given conditions it is impossible to realize in this problem under 
any controls (conditions). The class OCTPP in even such a limited formulation -- the optimal 
temperature distribution is given -- is broader than the class of heat transfer IP. As a 
rule, it is considered in the heat-transfer IP that the problem of controllability (the 
problem of existence of a solution) is solved, but is not in the OCTPP. Moreover, the 
OCTPP can be formulated as a problem to search for the optimal controls to assure other 
optimal indices (criteria) of the thermal process, i.e., not the optimal temperature distri- 
butions but other criteria, for instance, the thickness of the thermal insulation, thermal 
strains, times to achieve given temperatures or strains, etc. 

In the general case, the OCTPP is a problem in thermal projection (in the terminology 
of the author of [5]). In engineering practice, projection of computations in the solution 
of such problems had and has the designation "structural analyses," while the temperature 
field computations in direct problems are called "verifying analyses." 

Engineers in designing articles and structures in structural analyses solved those 
problems of searching for causes by means of effects, which have only been called "inverse 
problems" generally, "inverse heat-conduction problems," "inverse problems of heat transfer 
or heat transmission" in the last 15-20 years, particularly for the problems we have under 
consideration that are associated with complex convective-radiation-conductive heat exchange 
in thermal systems. 

Let us examine the method of solving the IP of heat transfer. All the common metho- 
dological considerations associated with problem classification and with terms--designations 
refer completely to the methods. The methods as well as the problems should be considered 
as a system of coordinated concepts that should be classified according to substantial cri- 
teria so (as has already been noted above) that the classification would be natural, scien- 
tific, and would be a source of knowledge about the objects being classified~ It is first 
necessary to define the term "method." As a rule, the method of solving a problem is, as a 
rule, understood to be the set of operations, recipes, actions that permit achieving the 
target set~ Our purpose is to obtain numerical values of the quantities desired (causes) 
by having a mathematical model of the inverse problem and experimental temperatures (T e) 

(effects). The set of operations, recipes, actions which is performed in a definite sequence 
(the set of sequential stages) to achieve this target is called "the method of solving IP." 
From such a definition there follows that we call the method of solving the IP that which is 
called the "algorithm of the solution" in cybernetics and in computer mathematics. 

Essential in such a definition is the accent on the fact that the method of solving IP 
is a set of actions, and for each action--recipe its own method can be used as the method 
of solving that individual problem that is solved at a given stage. One of the possible 
schemes for the algorithm to solve the IP is presented in [12, 13]. The diagram is presented 
in Fig. 2 with an indication of the recipe-stages for solving the IP. The whole algorithm 
can be called general, or a "general method" for solving IP. Certain particular methods of 
solving, problems and methods-organizers are used in each of the stages. 

The general method of solving IP is often designated by the method* applied to one of 
the stages of the general algorithm. Application of designations that methods of solving 
direct problems have, or designations that methods of solving particular problems in indivi- 
dual stages of the general method or the general algorithm have, for the general methods of 
solving IP produces a terminological maze. We spoke above of the direct methods that are 
applied in different divisions of mathematics for the solution of DP. The very same can be 
said about vmriational methods. 

Let us examine the criteria by which the general methods of solving IP can be classified, 
without considering the classification of methods used in each stage-~ecipe of the general 
algorithm (Fig. 2) in detail. The fundamental criterion is the presence of the operation of 
searching for the extremum of the residual functional ~(e) in the algorithm. 

When the experimental temperatures are substituted directly into the mathematical model 
of the I or II kind, we have model inversion methods or (by the traditional designation) 

*For exampie, an iteration method to determine T or an iteration method of minimization~ the 
method of finite differences to search for T, the method of least squares to identify the 
coefficients of a given dependence of the quantity desired, etco 
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Fig. 2. Diagram of the algorithm to solve IP by different methods. 

direct methods. The experimental temperatures T e are substituted directly (direct methods) 
into the model. The mathematical model of the direct problem is inverted here. 

From the model T M = f(A) we have A = f-(Te), where T M is the temperature of the model, 

f is the direct operator, f- is the inverse operator (the operation of inversion), A is the 
desired cause, T is the effect, and e is experimental. 
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We call the initial DP model the mathematical model of the first kind. This model is 
transformed, changed by special methods, recipes, procedures (see recipe II, Fig. 2). 
This changed model, for instance, an integral equation, a system of algebraic equations 
(finite differences), a system of ordinary differential equations (direct method), can be 
inverted. To invert means to write in such a form that A could be extracted from the model 
of the kind I (for example, if T = L(a), then the inversion operation (operator) is L- and 

a = L- (T e)). 

We call the solution, i.e., the expression obtained as a result of solving the equa- 
tions entering into a model of the kind I, a mathematical model of the kind II. This solu- 
tion can be inverted, i.e., an expression can be obtained for the search for A. For 
instance, a solution of the DP by any method of solving the heat-conduction problem is ob- 
tained. From this solution we obtain a computational formula to determine A (the heat- 
exchange coefficient or the thermal diffusivity coefficient, etc.) by the method of integral 
transforms or by the method of self-similar solutions. All the nonstationary methods of 
determining the thermophysical properties of substances (methods of a regular regime, 
methods of "flashes," etc.) are constructed by the procedure of inversion of models of the 
kind I or II. 

Thus, the first group of methods is methods of inverting models or direct methods. 
There is no procedure for searching for the extremum of the residual functional ~(s) (the 
residual is ~ = T M -- Te). The temperatures T are substituted into the inverted model of the 

e 
problem and data about A are extracted. 

The second group of methods contains the operation of searching for an extremum of the 
residual functional ~(a). A certain expression is ordinarily minimized - the criterion- 
functional in which the model T M and experimental T temperatures are compared. The causes 

e 
A are considered to satisfy the mathematical model for the search for T M if an extremum of 

the residual functional, deviations of s, exists. Therefore, control of the solution is by 
the main law of process control -by the law of controlling the deviation -- in methods 
called extremal. 

In the author's papers ([5], say) extremal methods are called variational. But the 
recipe IV (Fig. 2), the recipe for searching for model TM, always takes part in extremal 

methods. Variational methods of solving direct problems are applied for their search. It 
is rational to call methods of solving IP not by the designations of the methods for solving 
DP, which we apply in one of the stages of the general algorithm for the solution of IP, and 
not by methods-organizers, but to ascribe a designation (let it be new) to the whole 
algorithm.* 

Let us examine the general methods of solving IP. Some of the inversion methods (direCt 
methods) and some of the extremal methods already have a common designation for the whole 
algorithm. These designations could evidently be retained: for instance, the method of 
successive intervals, methods of partial and coordinate functions, gradient methods, etc. 
Incidentally, not only methods of searching for the minimum of a function are called "gra- 
dient" methods, but also methods of inverting the solutions of IP used in thermal engineer- 
ing to solve external inverse problems [21]. 

We consider briefly the classification of extremal methods which is unsatisfactory, 
according to our requirements, for scientific classification. Extremal methods can be 
separated into four groups: selection methods (samples), minimization, identification, and 
methods of optimal control theory. Each of the listed groups contains several (sometimes 
tens of) methods for searching for the extremum of the residual functionals. But there is no 
clear criterion for the separation, at least because the breakdown into identification 
methods and optimal theory methods is made according to a functional criterion (i.e., 
according to the branch of science in which the criterion is used). The very same minimiza- 
tion methods of the same residual functionals are often applied in the identification and 
optimal control theories. 

Methods containing a regularization procedure, for instance, regularizing algorithm-- 
methods of solving IP, could be extracted. Indeed, regularization is one of the strong 

*The term "direct methods" is not faultless in this respect. 
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recipes used in solving IP but inverse problems can also be solved without regularization. 
However, when applying direct methods the incorrectness of the inverse problems according 
to Hadamard (the instability property) is felt much more strongly than in the regularizing 
algorithms of extremai methods. The value Of the scientific direction in the development 
of methods of solving IP, which was started by A. N. Tikhonov, is not in the introduction of 
regularization as an always effective method for solving IP, but in the radical methodological 
revolution generated by the change in the traditional representation of the fact that it is 
impossible either to pose or solve incorrect problems according to Hadamard. By introducing 
the concept of "regularization of the solution of an incorrect problem," A. N. Tikhonov trans- 
ferred the problem from the plane of the "pointless and useless" searches to the plane of the 
"development and perfection of specific algorithms" [19, p. 105]. The gnosiological role of 
~egularization methods should be recalled precisely thus, and extremal methods of solving IP 
with regularization should rightly be called regularization methods or A. N. Tikhonov methods. 

In conclusion, the principal aim which the author has posed should be stressed: a clear 
classification of problems and methods for their solution will accelerate many times the 
information search for necessary methods to solve important scientific--technical problems. 
It is impossible to accept the situation that it is more rapid and cheap to solve a problem 
already solved then to find the source where the solution of this problem is presented. 
Development of a new method or solution of a new problem is certainly more prestigious from 
the viewpoint of the individual researcher than classification and a fast informational 
search, but the latter may induce a greater effect in both theoretical and applied effects 
from the aspect of a collective of researchers. 

NOTATION 

T, temperature; A, cause; f, direct operator; f , inverse operator; %, heat-conduction 
coefficient; Cv, specific heat; q, thermal flux intensity; ~, heat-transfer coefficient; T, 

time; xi, coordinates (i = i, 2, 3); s, coefficient of absorption; ~, Stefan--Boltzmann 

constant. Subscripts: e, experimental; M, model; s, surface; m, medium; v, V, volume; c, 

contact; in, internal. 
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MATHEMATICAL MODELING OF HEAT AND MASS TRANSFER 

IN FILM CONDENSATION 

A. A. Mikhalevich UDC 536.244 

The state of the problem of mathematical modeling of the heat and mass transfer 
during film condensation of a gas is considered. 

Heat-exchange apparatus intended to transfer the substance from the gaseous to the liquid 
state -- condensers -started to become widespread at the end of the 19th and beginning of the 
20th centuries in connection with the appearance of steam-condensation turbines. At this 
time the thermal power of powerplant condensers is about 4 TW in the world. As a rule, the 
process of film condensation of vapor is realized in this apparatus. 

The first theoretical work on heat exchange with condensation (W. Nusselt) appeared in 
1916 il], its results were the basis of methods of designing industrial condensators for de- 
cades. The majority of investigations on condensation reduced substantially to determining 
corrections to the Nusselt formulat to compute the heat-transfer coefficient. In 1954 Chernyi 
12] published a paper which set the beginning of a qualitatively new stage in the development 
of a theory of condensation. The author of this paper first represented the model of film 
condensation in the form of two conjugate boundary layers (one of which is the condensate 
film), which permitted application of the well-developed apparatus of boundary-layer theory 
to investigate this process~ This approach was utilized later to solve more complex conden- 
sation problems: vapor--gas systems [3, 4], a chemically reacting gas [5], etc. 

Two categories of problems on film condensation exist: external and internal. For the 
external problems the gas stream parameters outside the boundary layer limits (temperature, 
velocity, composition in the case of multicomponent gas condensation) remain constant. In 
industrial apparatus with condensation on the outer surfaces, the film flow regime is kept 
mainly laminar or wave laminar. 

The gas flow parameters vary continuously along the condensation surface during conden- 
sation inside tubes and channels, and the most diverse combinations of gas and liquid flow 
regimes can take place in the very same apparatus. In the general case, laminar film flow 

Nuclear Power Institute, Academy of Sciences of the Belorussian SSR, Minsk. 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 5, pp. 843-849, November, 1983. 
article submitted February i, 1983. 

Translated 
Original 

0022-0841/83/4505-1331507.50 �9 1984 Plenum Publishing Corporation 1331 


